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This article reviews the subject of edge localized mode (ELM) control using externally applied magnetic per-
turbations and proposes theoretical mechanisms that may beresponsible for the induced transport changes. The
first question that must be addressed is: what is the structure of magnetic field within the plasma? Although
initial hypotheses focused on the possibility of the creation of a region of stochastic field lines at the tokamak
edge, drift magnetohydrodynamics theory predicts that magnetic reconnection is strongly suppressed over the
region of the pedestal with steep gradients and fast perpendicular rotation. Reconnection can only occur near
the location where the perpendicular electron velocity vanishes, and hence the electron impedance nearly van-
ishes, or near the foot of the pedestal, where the plasma is sufficiently cold and resistive. The next question
that must be addressed is: which processes are responsible for the observed transport changes, nonlinearity,
turbulence, or stochasticity? Over the pedestal region where ions and electrons rotate in opposite directions
relative to the perturbation, the quasilinear Lorentz force decelerates the electron fluid and accelerates the ion
fluid. The quasilinear magnetic flutter flux is proportional to the force and produces an outward convective
transport that becomes significant if the resistive layer width becomes smaller than the ion gyroradius. Over the
pedestal region where theE×B flow and the electrons rotate in opposite directions relative to the perturbation,
magnetic islands with a width on the order of the ion gyroradius can directly radiate drift waves. If flux surfaces
are broken, the combination of stochastic electron transport and ion viscous transport can lead to a large net
particle flux. Since there are many transport mechanisms that may be active simultaneously, it is important
to determine which physical mechanisms are responsible forELM control and to predict the scaling to future
devices.

Copyright line will be provided by the publisher

1 Introduction

Next-generation tokamak fusion reactors need techniques to reduce the heat exhaust to a level that is acceptable
for the lifetime of plasma facing divertor components. Transient events, such as edge localized modes (ELMs)
[1], which are associated with high-confinement mode (H-mode), must limit the heat impulse that is delivered.
Extrapolations of ELM sizes from present devices to ITER predict 10-20 MW/event given estimates for the
pedestal height [2], yet tolerable ELM heat impulses must belimited to less than 1 MW/event [3] or, perhaps,
even less. Such predictions for type-I ELM sizes imply that it will be necessary to either suppress type-I ELMs or
mitigate their heat fluxes in order to maintain an acceptabledivertor lifetime [4]. It is important to note that, while
ELMs limit the confinement time by generating edge transport, ELMs also play the beneficial role of flushing
impurities from the edge plasma. So-called ELM-free H-modeoperating regimes have difficulty controlling
plasma density, lead to an undesirable build-up of high-Z impurities, and lead to a back-transition to L-mode
[1]. Any technique for controlling ELMs must also generate enough transport to maintain density control and
keep impurities from poisoning the core. Hence, rather thancompletely suppress ELMs, it may be desirable
to generate or actively trigger smaller edge instabilitiesat a pace that is consistent with tolerable erosion and
transport requirements.
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2 I. Joseph: ELM control, transport, and magnetic perturbations

This article reviews present theoretical understanding ofELM control using externally generated non-axisymmetric
magnetic perturbations. This technique can be used to eliminate ELMs entirely (suppression) [5, 6, 7, 8], to con-
tinuously generate more benign edge instabilities (mitigation) [9, 10], or to actively trigger smaller-scale ELMs at
a more rapid pace (triggering) [11, 12, 13]. Thus, updated ITER designs have considered external coils that gen-
erate such perturbations [14, 15]. The next section presents a brief overview of the presently known experimental
ELM control regimes that are induced by non-axisymmetric magnetic perturbations. The recent review by Liang
[16] addresses the experimental status of ELM control usingnon-axisymmetric magnetic perturbations as well as
a number of other control techniques such as ELM pacing through fuel pellet injection or through axisymmetric
vertical jogs of the plasma surface. Operation in a specific regime where type-I ELMs are passively stabilized
and another instability dominates transport is another important route for ELM mitigation. The review by Oyama
[17] discusses a number of such regimes including QH-mode, type-III ELMs, and type-V ELMs. New regimes
such as I-mode [18] may still await discovery.

The physics of non-axisymmetric perturbations is complex and few issues have been solved completely, par-
ticularly at the plasma edge where there are strong gradients (e.g. the pedestal), kinetic/neoclassical effects (e.g.
large trapped particle fraction at low collisionality) andchanges in geometry and sources (e.g. separatrix and
neutrals). The general single-fluidmagnetohydrodynamics (MHD)equations for the case of closed surfaces with
thin island layers has recently been reviewed by Boozer [19], where the relation between non-ambipolar trans-
port due to non-axisymmetric fields and plasma torque is explained. A comprehensive set of multi-fluid transport
relations has recently been derived by Callen [20]. In the pedestal, it is important to retain drift effects when
treating so-called “resonant” magnetic perturbations, perturbations with a helicity that resonates with field lines;
i.e. k‖ ∝ m−qn = 0 wherem is the poloidal harmonic,n is the toroidal harmonic,q is the safety factor, andR is
the major radius. The reason is that (i) the diamagnetic frequencies are typically larger than theE×B frequency
and (ii) the collisionality is typically low enough that thecharacteristic resistive scale length is smaller than the
ion gyroradius. If the response layer is of the order of the ion gyroradius, then a kinetic description will be nec-
essary. For simplicity, here, two-fluid drift-MHD equations are considered in order to display the general linear
response to resonant magnetic perturbations. Finally, it is useful to consider the effect of (iii) anomalous/viscous
transport, which is faster than the time scale for resistivediffusion.

The original hypothesis put forward to explain the ability of non-axisymmetric magnetic fields to control
ELMs was that the magnetic field at the edge of the plasma wouldbecome stochastic [9, 21] and the criterion
for achieving stochasticity is commonly used as figure of merit for the design of perturbation coils. However,
magnetic reconnection is strongly suppressed in a plasma that rotates in the perpendicular direction [22] and
strong perpendicular diamagnetic rotation is a basic requirement of magnetic confinement at the edge of the H-
mode pedestal. Measured changes to transport are either slight or are observed to have a large impact on particle
transport, not thermal transport. In fact, certain ELM control experiments routinely observe an increase in the
electron temperature gradient in the pedestal region, rather than a decrease, as would be expected in a stochastic
magnetic field [23] and as has been measured in previous ergodic divertor studies in L-mode [24] . Thus, the
supposition that an ergodic divertor would develop and limit the pedestal pressure gradient by controlling the edge
electron temperature [25] appears inconsistent with the data. A number of theoretical estimates and calculations
[7, 26, 27, 28, 29] have shown that pedestal transport changes cannot be explained by this hypothesis. Calculations
for the magnetic field structure show significant modifications by the response of the plasma to the applied fields
[30, 31, 32, 33, 34, 35].

In this article, physical mechanisms that are capable of explaining changes to particle transport are qualita-
tively considered. An overview of the present experimentalresults is given in Sec. 2 and the description of
the plasma equilibrium and particle fluxes are defined in Sec.3. Any transport mechanism that increases the
effective diffusivity with aδD that depends on the ratio of the magnetic perturbation field to the background field
δB/B must exceed the background transport level with diffusivity D0 in order to be observed. The requirement
δD > D0 sets a threshold forδB/B that depends on plasma parameters such as collisionality and shaping that
depend on the transport mechanisms that determine the diffusivities. The structure of the magnetic perturbation
inside the plasma is the first question that must be addressed. Section 4 discusses the linear ideal and non-ideal
plasma response to an external perturbation. The plasma will resist reconnection by attempting to shield the
resonant helicity components of the perturbation. At the same time, the plasma can strongly amplify neighboring
helicities if the perturbation couples well to an internal mode. The nature of the transport mechanism is the next
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question that must be addressed. Section 5 considers steady-state transport changes caused by the nonlinear per-
turbation structure: quasilinear, neoclassical,and stochastictransport. The transport generated by small islands or
a stochastic field is used to estimate the induced ambipolarE ×B flux [35]. The axisymmetric poloidal neoclas-
sical viscous force will allow relatively large ambipolar transport if quasilinear forces are taken into consideration
[29, 36, 37, 38]. Section 6 considers possible changes to turbulent transport. Damping of the toroidal rotation
profile or of zonal flows may be large enough to affect turbulent transport. In addition, sufficiently small islands,
on the order of the ion gyroradius in width, can directly radiate drift waves. The final section concludes with a
summary of results.

2 Experimental overview

At present, ELM control using non-axisymmetric magnetic perturbations appears to manifest in a number of
separate regimes depending on experimental configuration and tokamak facillity. First, Sec. 2.1 describes three
of the observed regimes based on differences between collisionality and geometry: (i) high-collisionalty ELM
mitigation, (ii) low-collisionality ELM suppression and (iii) ELM pacing. Next, Sec. 2.2 discusses the relevance
of using the Chirikov criterion for magnetic stochasticity, which has been advocated as an experimental figure of
merit [21]. Finally, Sec. 2.3 examines a typical low-collisionality ELM-suppressed discharge. It will be seen that
extensions of ideal MHD are necessary for an accurate description of the pedestal region. The key conclusions
are: (i) theE × B velocity is smaller than the diamagnetic velocities and, infact, the ions and electron rotate in
opposite directions at the edge; (ii) the resistive scale issmaller than the ion Larmor radius, which implies that
finite Larmor radius (FLR) effects are important; and (iii) anomalous diffusivity and viscosity are much larger
than the resistive diffusion of magnetic flux, which impliesthat it is important to include anomalous transport.

2.1 Observed ELM control regimes

(i) High-collisionality ELM mitigation, the first regime found on DIII-D [9, 5, 39, 40], observed the replacement
of large type-I ELMs by much smaller transient events. The toroidal mode numbern = 3 perturbations had little
effect on the plasma profiles, but were found to strongly damptoroidal rotation. ASDEX-Upgrade has recently
discovered an ELM control regime that shares certain similarities [10]. For ASDEX-Upgrade, there is a clear
threshold in either collisionality or density that must be exceeded in order for type-I ELMs to disappear. During
mitigation, there is an enhancement in plasma densityne, and presumably particle confinement. Both ASDEX-
Upgrade and DIII-D found that the perturbation strength must exceed a threshold in perturbation amplitude on
the last closed flux surface of roughlyδB/B > 10−3, but the results are not very sensitive to the mode spectrum.
The edge pressure gradient does not change appreciably and should still be unstable to type-I ELMs according to
ideal peeling-ballooning theory [41, 42]. The nonlinear effect of such a perturbations on the evolution of a type-I
ELMs is anticipated to be relatively small; thus, It might besuspected that a new, non-ideal edge instability has
become unstable enough to dominate transport. On DIII-D, non-axisymmetric striation of the strike-points was
observed and explained as the bifurcation of the poloidal separatrix into a “homoclinic tangle” [43]. However,
further investigation showed that the structure appeared to be more consistent with the formation of an amplified
n = 1 mode that may have also been responsible for damping rotation [44].

(ii) Low-collisionality ELM suppression was discovered on DIII-D [5, 6, 7] soon after the high-collisionality
cases described above. When ann = 3 perturbation is activated during H-mode, there is a prompt change in
turbulent fluctuations [45] and fluxes at the target plate [46]. An initial transient phase, on the order the transport
time scale,typically ensues where ELMs become smaller and more frequent before being completely eliminated.
During this phase, the plasma density is reduced due to an increase in particle transport and, inβ-feedback mode,
the temperatures increase, maintaing the H-factor.This technique can also generate smaller, more frequent ELMs
on JET usingn = 2 fields [47] and on MAST usingn = 3 fields [48], although complete suppression has not
been observed.The results have similar phenomenology in that they require(i) the resonant harmonic of the
perturbation amplitude to exceed a given threshold, roughly δBm=qn/B > 10−4, (ii) the collisionality to be
lower than a given threshold, e.g.ν∗ < 0.5 for MAST, and (iii) the edgeq95 to be in a narrow window, typically of
order∆q95 ∼ 0.1. ELM suppression appears to occur by reducing the edge pressure gradient and thus bootstrap
current drives for peeling-ballooning modes [6, 49]. However, since the edge density pedestal is reduced and the
steep part of the edge electron temperature gradient is observed to increase, the maximum pressure gradient is
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4 I. Joseph: ELM control, transport, and magnetic perturbations

not necessarily reduced. The electron temperature at the top of the pedestal flattensand reduces the width of the
peak gradient regionand the overall effect is to reducethe global drive for instability. The strike point develops
multiple helical striations in particle flux [26, 50]; however, the heat flux deposition pattern remains essentially
axisymmetric [50, 51] which signals a very shallow penetration of the tangle into the pedestal. ELMs remaining
during the incomplete suppression phase, which do penetrate into the pedestal, generate heat flux patterns that
are close to expectations of the tangle structure based on the applied perturbation fields [51].

(iii) ELM pacing has been used to control impurities in Lithium coated discharges on NSTX [12, 13]. Lithium
coating of the divertor target plates represents another route to ELM suppression; however, like ELM-free H-
mode, impurities tend to collect in the core and eventually degrade performance. ELM pacing using magnetic
perturbations leads to a desirable operating scenario where impurities are controlled. In some cases, it can be
shown that the edge temperature gradient increases sufficiently to cause destabilization of an ELM. In order to
control density during ELM-free H-mode, JFT-2M has also used magnetic perturbations to achieve a continu-
ous destabilization of ELMs [11]. In general, large perturbations can cause a back-transition to L-mode that is
qualitatively similar to an ELM event as reported for MAST in[48, 52, 53]. For NSTX, significant divertor heat
and particle flux striations occur that are well matched to predicted connection length profiles [54, 55]. These
predictions can arbitrarily set the depth that field lines penetrate into the pedestal by treating the plasma as ideal
within a certaincontrol surface and as a vacuum outside of this surface.However, the connection length profiles
are found to be relatively insensitive to the location of theideal-stochasticcontrol surface.

2.2 The Chirikov criterion for magnetic stochasticity

Much theoretical attention has addressed low collisionality ELM suppression,case(ii), and less attention has
focused on the other two cases. Both suppression and triggering require the pitch-resonant Fourier harmonics
of the normal field perturbation to exceed a threshold. The requirement of pitch-resonance motivated the study
of the formation of magnetic islands or stochastic regions.A magnetic perturbationδBmn that is resonant at a
rational surfacers, given implicitly by q(rs) = m/n wherem is the poloidal andn is the toroidal harmonic,
generates a magnetic island of (full) width
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√

∣

∣

∣

∣

Rrs
ns

δBm=qn

B

∣

∣

∣

∣

(1)

where the global magnetic shear is defined bys = d log q/d log r. (For an expression that is accurate in toroidal
geometry, see [27]). Since the spacing between rational surfaces of a given toroidal harmonic isδrs = 1/nq′ =
rs/nqs, islands will overlap and generate a stochastic layer once the Chirikov parameter
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becomes larger than unity. In fact, a correlation between ELM suppression and the Chirikov parameter was found
in Ref. [21]. Such studies typically assume that the magnetic perturbations in the plasma are the same as the fields
produced with no plasma at all, the so-called “vacuum approximation.” However, at fixedq, the Chirikov criterion
is really a combined measure ofδB/B and of the edge shears = d log q/d log r. Due to the small window of
∆q95 where ELM suppression actually occurs, it is difficult to independently determine the dependance on shear.
In fact, because the fields within the plasma have not been measured to date, it is only the threshold in the vacuum
field δBvac/B that is actually well-determined.

The stochasticity interpretation met with immediate difficulties since: (i) The observed transport effects appear
to contradict analytic estimates and numerical calculations. (ii) There is a very small window in edgeq95 where
suppression is found, rather that theO(1) region of∆q95 where island overlap would occur in the vacuum ap-
proximation. (iii) There are measured dependences on dimensionless parameters such as shaping, collisionality,
and plasmaβ = 2µ0p/B

2, but the predictions of stochasticity are relatively insensitive to these parameters. (iv)
Finally, the high-collisionality ELM mitigation experiments do not appear to be sensitive to the pitch-resonance
of the spectrum.

One of the most robust effects appears to be a change in particle transport. When experiments are run at
fixed global pressure (β-feedback), the temperature tends to change a manner that somewhat compensates for the
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Fig. 1 Plasma parameters vs. normalized poloidal fluxψn for the low-collisionality ELM suppressed DIII-D discharge
126006. (a) Electron and deuterium ion densityne,i and temperatureTe,i. (b) The perpendicular (toroidal) rotation frequency
(Eq. ??) profiles measured for theCVI+ impurity species (blue dashed) and inferred from radial force balance (Eq. 8):E×B
(green), deuterium (red), and electron (black) frequencies. TheE × B flow and the electrons rotate in opposite directions
(ωωe < 0) over the green shaded region0.85 < ψn < 0.925. The ions and electrons rotate in opposite directions (ωeωi < 0)
over the entire red and green shaded region0.85 < ψn.

change in plasma density: when density is reduced, temperatures increase, and vice-versa. This is not consistent
with stochastic electron thermal transport, even when fairly sophisticated models are used, unless the magnetic
field perturbations are strongly suppressed near the separatrix [26, 27, 29, 37].The transportmodelsare consistent
with an isolated island or stochastic region that develops at thetop of the pedestal,e.g. see [29]. However,it is
important to consider other types of transport mechanismsas well.

2.3 Example of a low-collisionality ELM-suppressed pedestal

Plasma parameters for theELM-suppressed DIII-Ddischarge #126006, which has been well-studied [29, 30, 31,
32], are shown in Fig. 1(a) over the outer 50% of the normalized poloidal fluxψn. In the ELM-suppressed phase,
the density drops by roughly a factor of 2 at the edge, while the temperatures somewhat increase. The curves are
fits to data that is mapped to inferred location on equilibrium flux surfaces and were prepared using the pedestal
analysis of Ref. [49]. The electron densityne (black solid) and temperatureTe (black dashed) are measured via
Thomson scattering while the carbon ion impurity (CVI+) density, temperatureTi (red dashed), and velocity are
measured via charge exchange recombination spectroscopy (CER) and used to determine the ion densityni (red
solid).

Perpendicular (toroidal) rotation frequencies are shown in Fig. 1(b) with a normalization convention described
in Eq. 11 of Sec. 3.2. Charge exchangerecombinationspectroscopy is used to directly measure the carbon
impurity ion perpendicular rotation profile (CIV+ dashed blue). Radial force balance (Eq. 8) is then used to infer
the perpendicular rotation of theE × B frameΩE (green), deuteriumΩi (red), and electronsΩe (black), from
the diamagnetic rotation profiles due to the pressure profiles in Fig. 1(a). It is clear thatE×B rotation frequency
is smaller than the diamagnetic rotation frequency in the steep gradient region of the pedestal. It is important
to emphasize that, since the electron temperature gradientis much steeper than the ion temperature gradient, the
electrons and ions can rotate in opposite directions at the edge of the pedestalfor ψn > 0.85 (theshadedregion
shown in green in Fig. 1(b)).(Note that these profiles were not available to Ref. [30], andthe assumptions used
there modified the location of the electron null point toψn ≃ 0.6).

Figure 2(a) demonstrates that the low collisionality produces an extreme range of time scales. The Alfvén
time scaleτA = R/VA (black dashed) and hydromagnetic time scaleτH = τA/sn (black solid) are of order
10−8 − 10−7s. The energy confinement time scale inferred by estimating the ion thermal diffusivityχi from
the ion temperature profileτTi = r2/χi (blue solid) varies from10−2 − 1 s (compare to the curveτ1m2s for a
diffusivity of 1 m2/s (dashed blue)) and is much shorter than the resistive time scaleτR = r2µ0/η‖ (red dashed)
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6 I. Joseph: ELM control, transport, and magnetic perturbations
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Fig. 2 Analysis of times scales corresponding to Fig. 1. (a) Time-scales: inverse ion cyclotron frequency1/ωci, hydro-
magnetic timeτH = qR/nsVA, Alfvén time τA = qR/nVA, inverse ion rotation frequency1/ωi, resistive time scale
τR = r2µ0/η‖, and visco-resistive time scaleτrec = S

1/3
H τR. (b) Dimensionless constants: Lundquist #’sSA = τA/τR,

SH = τH/τR; “Prandtl” #’sPTi = τTi/τH , P1m2/s = τR/τ1m2/s, and FLR parameterRH = ρcs/δrec,H the ratio of the

ion sound gyroradius to resistive layer widthδrec,H = S
−1/3
H r.

which is on the order of10 s. Figure 2(b) shows that the Lundquist numberSA = τR/τA (black dashed) and
the hydromagnetic Lundquist numbersSH = τR/τH (black solid) are as large as108 − 109. This allows one to

estimate that the basic resistive reconnection time scaleτrec = S
−2/3
H τH (red dashed) is on the order of 10-100

ms. The ion rotation frequencyωi = ωE − ω∗i is much faster thanτrec, which implies that reconnection is
strongly suppressed in the single-fluid MHD model [22]. The characteristic resistive length scaleρrec = S

−1/3
H r

is smaller than the ion gyroradius, which implies that FLR effects can play an important role.

3 Definitions of particle transport and equilibrium

In a magnetized plasma, the particle flows are determined from a drift expansion of the fluid equations (Sec. 3.1).
The assumption of radial force balance requires a toroidal equilibrium magnetic field geometry and determines
the drift flows within a magnetic surface. Section 3.2 describes the geometric conventions (co- and contra-variant
indices) used in this article and presents three equivalentexpressions for the net radial current. Finally, Sec. 3.3
discusses the constraint of ambipolarity: any perpendicular current must generates a parallel return current.

3.1 Fluid equations

Particle and momentum balance for each charged particle species is given by the fluid equations

∂tn+∇ · nV = 0 (3)

∂tmnV +∇ · (mnVV + p+ π) = Zen(E+V ×B) +R. (4)

with massm, electron chargee, charge stateZ, densityn, velocityV, pressurep, viscous tensorπ, and the
friction forceR. The first twofluid moments determine the evolution of the system if aclosure for the pressure
andviscous tensorπ is specified. For a magnetized plasma, the gyrofrequencyωc = ZeB/m and gyroradius
ρc = VT /ωc, whereVT =

√

T/m is the thermal velocity, set the fundamental scales. The drift expansion
employs the small parameterδ ∼ ω/ωc ∼ ν/ωc, whereω is a characteristic dynamical frequency andν is
a characteristic collisional frequency. Near a rational surface, microscopic scales that are smaller than the ion
gyroradius can be generated; however, in order to simplify the discussion, it is assumed that the smallest spatial
scales of interestw satisfy the orderingρc/w ∼ O(δ). Given this ordering, force balance Eq. 4 yields an
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expression for the flow accurate to orderδ2:

V = V‖b+
b×E

B
+

b×∇p
ZenB

+

(

b×
(

d
dtmnV+∇ · π −R

)

ZenB

)

+ . . . . (5)

3.2 Equilibrium fields, flows, and geometry

The solution is expanded order by order inδ viaB = B0+δB1+ .... Since the perturbations of interest are rather
smallδB/B0 ∼ 10−4−10−3, they are assumed to arise at orderδB1. Thus, MHD force balanceJ0×B0 = ∇p0
must hold to lowest order, given the assumption of quasineutrality. This implies that the equilibrium magnetic
field B0 can be assumed to have toroidal magnetic surfaces due to the constraintB0 · ∇p0(r) = 0, wherer is
a generalized radial coordinate parameterizing the surfaces (assuming thatB0 6= 0 andp′0 6= 0.) In magnetic
coordinates with poloidal angleθ and toroidal angleζ, this implies that the magnetic field has the representation

B0 = ∇ψθ(r)×∇θ +∇ζ ×∇ψζ(r) = Bθ(∂θx+ q(r)∂ζx). (6)

The convention for vector indices used in this article is that Bθ ≡ B0 · ∇θ is a contravariant component and
Bθ = B0 · ∂θx is a covariant component.The safety factorq(r) ≡ dψθ/dψζ yields the field line equations
dζ/dθ = q along unperturbed field lines.The definitions imply thatBζ = qBθ = ψ′

θ/J whereX ′ = dX/dr
and the Jacobian isJ = ∂rx · ∂θx× ∂ζx. The relatively large parallel thermal and electric conductivities imply
that the equilibrium temperatureT0(r), electron densityn0(r), and potentialφ0(r) are all flux functions to lowest
order.

The Lorentz force acting on each species (labeled by subscript j) determines the lowest order perpendicular
flow via fj ≡ ZjenjVj ×B. Radial force balance yields the drift frequency

Ωj ≡ V ζ
j − qV θ

j = fjr/Zjenjψ
′
ζ (7)

and, to lowest order inδ, the equilibrium drift frequency is

Ωj,0 = −φ′0/ψ′
ζ − p′j0/Zjenj0ψ

′
ζ . (8)

Parallel force balance implies that the total force must be perpendicularB · fj = 0 and thus,fjθ/fjζ =
−Bζ/Bθ = −q. This leads to three equivalent forms for the radial currentof speciesj

ZjeΓ
r
j = ZjenV

r
j = (fjζBθ − fjθBζ)/JB2 = fjζ/ψ

′
ζ = −fjθ/ψ′

θ. (9)

In this article, we adopt the commonly used convention of expressing the drift frequency as an equivalent
toroidal frequencyΩ ≡ V ζ − qV θ, e.g. as defined in Eq. 7. In general, for a mode with wavenumber k =
−m∇θ + n∇ζ, the Doppler frequency isωV = k ·V = nV ζ −mV θ and the parallel Doppler frequency is

ωV,‖ = k‖V‖ = (nq −m)(V ζB2
tor + qV θB2

pol)/qB
2. (10)

The perpendicular Doppler frequency is proportional to thedrift frequencyΩ:

ωV,⊥ = k⊥ ·V⊥ = (V ζ − qV θ)(mB2
tor + qnB2

pol)/qB
2. (11)

and is typically of ordermΩ/q. For a resonant mode that satisfiesm = qn, the parallel Doppler frequency
vanishes and the perpendicular Doppler frequency is preciselynΩ.

3.3 The constraint of ambipolarity

Quasineutrality is described by the condition of current continuity: ∇·J = ∇·J‖b+∇·J⊥ = 0, which requires
parallel and perpendicular current flows to balance. For each species, the individual components of the particle
flux can be written as the sumΓ = ΓV + ΓE + Γp + Γpol + Γπ + ΓR + . . . , corresponding to the consecutive
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8 I. Joseph: ELM control, transport, and magnetic perturbations

terms in Eq. 5. The net flux advected through any topologically toroidal surfacer is defined through the surface
average

〈Γr〉 =
∫

ΓrJ dθdζ/A (12)

where the flux surface area isA =
∮

|∇r|J dθdζ. Non-axisymmetric magnetic perturbation fields generate both
intrinsically ambipolarΓa and non-intrinsically ambipolar flowsΓna. Ambipolar transportΓa = ΓV̄ +ΓE +ΓR

is caused by center of mass parallel flow̄V , VE = E × B/B2 flow, and collisional transport. Non-ambipolar
transportΓna = ΓV − ΓV̄ + Γp + Γpol + Γπ is caused by relative parallel flow, diamagnetic flow, and the
drifts due to non-inertial and viscous forces. In equilibrium, the electric field will reach the value required for
ambipolar transportEA so that bothΓA ≡ Γa(EA) andΓNA ≡ Γna(EA) are ambipolar and the net flux is equal
for electrons and ions. The small electron/ion mass ratiome/mi ≪ 1 implies that electrons dominate parallel
conduction processes due to their larger thermal velocity and ions dominate perpendicular conduction processes
due to their larger gyroradius. Thus, ambipolarity impliesthat, to lowest order,

〈ΓNA〉 ≃ 〈ΓJ,e + Γp,e〉 ≃ Zi〈Γp,i + Γpol,i + Γπ,i〉. (13)

4 Plasma response

A plasma can react to an external magnetic perturbation in a manner that both suppresses and amplifies the
perturbation simultaneously. Three complex “transmission factors” are sufficient to parameterize the effect of the
ideal and non-ideal physics at play. These transmission factors are required to estimate quasilinear transport in
Sec. 5. Ideal MHD determines many aspects of the plasma response for perturbations that travel slowly compared
to the Alfvén speed. The linear ideal MHD response, described in Sec. 4.1, allows one to define two solutions
far from a rational surface: a small solution that can produce no tearing and a large solution that may. The
ratio of the two solutions is determined by the physics in thelayer, which may require non-ideal effects for an
accurate description. In general, the layer physics can be complicated, but the effect can be parameterized with
two complex parameters defined in Sec. 4.1: the relative internal transmission factorSint, which quantifies the
screening by the current channel, and the relative transmission factor for reconnectionSrec, which quantifies the
screening within the current channel.

The absolute transmission factors are defined as the ratio between the perturbation in the plasma and the
vacuum field perturbation. The external transmission factor Text is completely determined by the linear ideal
MHD response, which typically leads to an amplification of the least stable modes of the system, as described
in Sec. 4.2. This so-called “resonant field amplification” leads to an external transmission factorText that can
be larger than unity and amplifies the tearing that would occur if the shielding currents were to relax. Because
the absolute internal transmission factorTint = SintText and the absolute reconnection transmission factor
Trec = SrecTint are both proportional toText, resonant field amplification (RFA) always plays an important role
in determining the ELM control threshold, regardless of thedetails of the processes involved. This leads to the
conclusion that there is a window in plasmaβ (actually in the local gradientα) over which ELM suppression
should occur.

The linear two-fluid drift-MHD plasma response, discussed in Sec. 4.3, generates resonances in the relative
transmissionSint at theE × B frequency and the ion and electron diamagnetic frequenciesω∗i,e. The addition
of diffusion in the so-called semi-collisional regimes tends to smooth theE × B and ion resonances, but cannot
affect the electron resonance, which is determined by the parallel Ohm’s law. Thus, an island can form most
easily near the location where the electron impedance nearly vanishes, which is near the location where the
relative perpendicular electron rotationωe ≡ ω − ω∗e vanishes.

4.1 Ideal MHD response near a rational surface

Plasma physics is well-described by ideal MHD sufficiently far from a rational surfacers where the perturbation
wavenumberk matches the “pitch” of the equilibrium magnetic fieldB0. On this surface, the safety factor is
a rational numberq(rs) = m/n and the pitch-resonant component of the perturbed flux, which satisfiesk‖ ∝
m − qn = 0 can potentially cause an magnetic island to form. However, an ideal conductor must conserve the
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evolution of magnetic flux through any closed loop that moveswith the conductor. Reconnection is forbidden in
an ideal conductor because a topological rearrangement of magnetic field lines requires an essential redistribution
of magnetic flux. In a plasma, which is a nearly ideal conductor, a narrow current layer arises in the vicinity of
the rational surface to shield the reconnected flux. Plasma rotation governs the nonlinear and/or dissipative
processes that determine the structure of the surface current layer. Because reconnection generically breaks
magnetic surfaces and causes a loss of plasma confinement there are essentially two plasma states: a state of
good confinement where temperature is high and resistivity is low and little reconnection is possible and a state
of poor confinement where temperature is low and resistivityis high and reconnection can proceed freely.

The physics near the rational surface simplifies in the limitof zero pressure and large aspect-ratio slab geom-
etry. Assume that there is symmetry, so that the perturbation depends only ony = θ − ζn/m and is independent
of z = ζ. The helical flux is defined asψ ≡ ψz = ψζ − ψθn/m ≃ B0x

2/2Ls + δψ(x) exp (imy). The
flute-reduced MHD equations [67] evolve the magnetic fieldB = B0 (z+ z×∇ψ) and guiding-center velocity
V = z ×∇φ/B0. The equations are written using MHD normalization for the variables defined by an arbitrary
radial scale lengthr0, densityn0 and reference Alfvén velocityV 2

A0 = B2
0Zi/µ0n0mi, whereµ0 is the magnetic

permeability. The normalized variables arêB ≡ B/B0, ψ̂ ≡ ψ/B0r0, φ̂ ≡ φ/B0r0VA0, V̂ = V/VA0 and
t̂ ≡ VA0t/r0. Dropping the hats for ease of notation, the Ohm’s law and current continuity (vorticity) equations
become

∂tψ = −[φ, ψ] (14)

∂tU = −[φ, U ]− [ψ, J ] (15)

U = ∇ · V −2

A ∇φ (16)

J = ∇2ψ (17)

[A,B] = z · ∇A×∇B. (18)

Let ωL be the perturbation frequency in the lab frame andωE = kyVE be theE × B frequency due to the
equilibrium electric potentialφ0(r). Far from the rational surface, the dispersion relation allows shear Alfvén
wavesω2 ≡ (ωL − ωE)

2 = (k‖VA)
2. The system also reduces the fast compressional Alfvén wave to the

two solutions of the vacuum dispersion relation,k2⊥ = 0. The non-singular “vacuum solution”ψvac(r) ∝
rm exp (imy), shown as the dashed green curve in Fig. 3, is the solution that would be generated by a perturbation
on the boundaryψvac(a) if there were no plasma. Magnetic shear causes the two Alfvén branches to mode-couple
in the vicinity of the rational surface whenω 6= 0. In the region exterior to the Alfvén resonances, the physics
asymptotically limits to the decoupled case and allows one to define the two canonical solutions that are required
for the rest of the analysis. For non-ideal models, the widthof the response layerw is set by physics other than
the Alfvén resonances, sow will be considered to be an independent parameter in the following. At the end of
this subsection, the linear ideal MHD response in the mode-coupling region between Alfvén resonances will be
described in detail.

Even in the general case where the interchange and kink instabilities are retained, two linearly independent
ideal solutions can be defined in the exterior region. (i) Thefree-boundaryexterior solutionψext (blue, dotted
curve), also known as the small solution, is defined so that itproduces no tearing: it is non-zero on the boundary
r = a and vanishes at the rational surfacer = rs. In a symmetric slab or cylinder, there is no coupling between
Fourier harmonics andψext(r < rs) = 0. To normalize this solution to the vacuum solution, letψext(a) =
ψvac(a). (ii) The fixed-boundaryinterior solutionψint (red, dotted curve), also known as the large solution, is
defined to be produced by a current on the rational surface: itvanishes on the boundaryψint(a) = 0 and is
non-vanishing at the rational surface. Thus, this solutioncan potentially produce tearing of the flux surfaces. As
shown in Fig. 3, both solutions have a cusp at the rational surface determined by the jump in the radial derivative

[ψ′] ≡ lim
x→+w

ψ′(rs + x) − ψ′(rs − x). (19)

The cusp represents a surface current on the rational surface. To normalize the interior solution, let the cusp in the
solutions be equal and opposite to that of the external solution [ψ′

int](rs) ≡ −[ψ′
ext](rs). The general solution

(solid black curve) in the exterior region defined by|r − rs| ≫ w, wherew is the width of the current layer can
be expressed as the linear combination

ψ(r) = Ψintψint(r) + Ψextψext(r). (20)
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10 I. Joseph: ELM control, transport, and magnetic perturbations

The relative transmission factor is defined to beSint = Ψint/Ψext. For example, ifΨint ∝ Sint = 0, then
the solution is clearly ideal. On the other hand, ifSint = 1, so thatΨint = Ψext, then the surface current
apparently relaxes and the solution is proportional to the smooth “relaxed” solutionψrelax(r) = ψext(r)+ψint(r)
(solid purple curve). In this case, the ratio of the internalflux to the vacuum flux isText = ψint(rs)/ψvac(rs),
and is typically amplified by toroidal effects as discussed in the next section. Note, however, that because the
exterior/small solution is most easily extracted from an ideal MHD code, the external transmission factor is often
estimated via the approximationText ≃ −[ψ′

ext(rs)]/2ψ
′
vac(rs). While Text is determined by the properties of

the ideal MHD solution in the exterior region alone, the internal transmission factorTint = SintText is determined
by the physics near the rational surface.

The ideal solution requires a net surface current to flow nearthe rational surface that can be measured by the
cusp in the solution

∆′ ≡ [ψ′]/ψ̄ = lim
x→w

∫ rs+x

rs−x

µ0Je
−imyd3x/Aψ̄. (21)

Given the normalizations above, the traditional tearing stability parameter is∆′
int = −∆′

ext = [ψ′
int]/ψint (with

instability if ∆′
int < 0). The equation

∆′ = ∆′
int(1−Ψext/Ψint) (22)

can be restated as a complex equation for the relative transmission of the internal solution

Sint = 1/(1−∆′/∆′
int). (23)

The radial structure of the current near the rational surface is determined by the physics active in the inner layer.
Each Fourier harmonic ofJ in Eq. 21 must match the asymptotic boundary condition determined by∆′

int in
Eq. 22. Since plasma rotation at frequencyω (relative to the rest frame of the perturbation) tends to suppresses
reconnection, typically,1/|Sint| ∝ 1 + (ω/ωrec)

α whereωrec is a threshold frequency for reconnection.
Although the ideal solutionψint has tearing parity, it may or may not signify actual reconnection depending

on the physics within the current channel near the rational surface. For the so-called “constant-psi” regimes, the
solution forψ does not vary much within the interior layer andψ(rs) ≃ Ψint. However, nearly-ideal regimes are
not “constant psi,” which implies that the current layer hassubstructure. For these cases, the actual reconnected
flux ψ(rs) ≡ Ψrecψint(rs) is much smaller than the asymptotic value at distances larger than the layer width

ψ̄(rs) ≡ lim
r→w

(ψ(rs + r) + ψ(rs − r))/2 = Ψintψint(rs). (24)

For nearly ideal regimes, the relative transmission for reconnectionSrec ≡ ψ(rs)/ψ̄ = Ψrec/Ψint and the total
transmission for reconnectionTrec ≡ SrecTint = SrecSintText are typically rather small. The actual island width
of the island that would be generated iswrec = 4

√

|ψ(rs)Ls/B0| = wvac

√

|Trec|.
The linear ideal MHD response [56] to an external perturbation is the canonical example of a “non-constant

psi” regime [22]. Assume that the background helical flux possesses magnetic shear so thatψ0/B0 = x2/2Ls and
k‖ = k′‖x = kyx/Ls. The ideal MHD constraintE‖ = 0 implies thatδφ = δψωLs/ckyx, where the relative fre-

quency isω = ωL−ωE . For a thin perturbation∂x ≫ ky, the dispersion relation is∂x
[

ω2 − (VAk‖)
2
]

∂xδφ = 0.
Thus, the compressional wave couples to the shear Alfvén wave at the two locations±xA wherexA = ω/k′‖VA =

ω/ωAky andωA = VA/Ls. For example, for drift frequenciesω∗n = kyρcsVs/Ln, where the ion sound speed
is Vs =

√

(Te + Ti)/mi and1/Ln = d log n/dx, the resonance spacingx∗ ∼ ρcs
√
βLs/Ln is typically on

the order of the ion sound gyroradiusρcs = Vs/ωci. The linearly increasing solutionψext = x represents the
solution to an odd displacement of the flux surfaces at large distances, and, thus, is equivalent to the exterior so-
lution. The interior solution is a constantψint = 1, which represents the small solution in the slab. The response
to an even displacement of the flux surfaces at large distances δψ = Re (2ix/π) tanh−1 (x/xA) exp (ikyy) is
singular at the resonancesxA. As expected from ideal MHD, there is no reconnection at all:Srec = 0, because,
asx → 0, the flux vanishes asψ ∼ x2. The interior solution for|x| > xA is actually phase-shifted byπ/2 from
the exterior solution. The asymptotic behavior asx → ∞ is δψ → |x| cos (kyy) + 2xA/π sin (kyy). With the
results∆′ = iπ/xA and∆′

int = −∆′
ext = −2ky, the transmission factor becomesSint = 1/(1 + iπωA/2ω).

Thus, for the linear ideal case,Sint ≪ 1 for slow rotationω ≪ ωA, but approaches 1 in the limit of large rotation
ω ≫ ωA, even thoughSrec = 0.
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Fig. 3 (a) Magnetic fluxψ functions in the ideal external region|r − rs| ≫ w. The general solutionψ(r) (solid black) is a
linear combination of the ideal exteriorψext (dotted blue) and ideal interiorψint (dotted red) solutions. In this case, the fully
relaxed solutionψrelax (solid purple) is less stable than the vacuum solutionψvac because|Text| > 1. However, inner layer
physics keeps the internal transmission factorTint ≪ 1. (b) The magnetic fluxψ (solid) and electric potentialφ (dashed) in
the inner region|r − rs| ≪ w for a “non-constant”ψ regime has multiple layers. The ideal inertial regime displays Alfvén
resonances atr−rs = ±xA, but the flux vanishes atrs so there is no reconnectionTrec = 0. The relative transmission factor
Sint reduces the interior component and generates a phase delay of π/2. Re (ψ) ∝ ψext (blue) implies thatIm (ψ) ∝ ψint

(red).

4.2 Resonant amplification of the exterior solution

Any external perturbation that is resonant with an ideal MHDnormal mode will be amplified within the plasma
due to “resonant field amplification” (RFA) [57]. In axisymmetric toroidal geometry, the poloidal harmonics of
the ideal MHD eigenfunctions couple and the ideal solutionsdevelop a cusp, as shown in Fig. 3(a), in the vicinity
of all rational surfaces for a givenn. In addition, finite current and pressure gradients alter the mode structure
significantly from the vacuum case. For an ideal plasma, the plasma displacementξ = δx(ψ, θ, ζ) can be taken
to represent the plasma state. IfF̂ represents the linearized MHD force operator, the linear response of a plasma
can formally be decomposed into normal modesF̂ξλ = −ω2

λρξλ where hereρ = mini. The response to any
external sourceS(x)e−iωt, determined by the solution toρξ̈ − F̂ξ = ρS(x)e−iωt, can be formally represented
asξ =

∑

λ〈ξ
†
λ ·S〉e−iωtξλ/(ω

2
λ −ω2) where, here,〈X〉 =

∫

Xρd3x denotes the inner product over the volume.
Since the external perturbation is typically much slower than the Alfvén frequency,ω ≪ ωλ ∼ ωA, if the least
stable, i.e. lowest frequency, mode approaches marginal stability ω2

0 → 0, a very large response will be elicited
for a relatively small perturbationξ ≃ 〈ξ†0 · S〉e−iωtξ0/(ω

2
0 − ω2). For example, the least stable ideal mode is

often an external kink mode (stablized by an external wall),which becomes unstable whenβn = βaB2/ItorBtor

exceeds the stability limitβcrit ∼ O(1). Thus, amplification scales asText ∝ 1/(1− βn/βcrit). Near marginal
stability, the singular behavior of the transmission factor will be resolved by non-ideal and/or nonlinear effects.

Observation of RFA has been confirmed experimentally in studies of resistive wall modes on both DIII-D
[58] and JET [59]. The first detailed investigations were made using the CAS3D code to predict the size of
islands caused by error fields in W7X [60, 61]. Ideal linear response calculations also give information about the
possibility of stochasticity because, if nonlinear effects are small, the island size that would be generated if there
were no plasma screening can be determined from the magnitude of the shielding current near the rational surface.
The first investigations for tokamaks were made using the IPEC code [62], based on the DCON eigenvalue code
[63], to determine the non-axisymmetric deformation of tokamak equilibria due to magnetic perturbations. It
was found that the ideal MHD response for plasmas of interestwill often substantially rearrange the applied field
spectrum from the vacuum field. Perturbation fields that match the eigenmodes are strongly amplified and such
harmonics need to be targeted for error field control [64], and for ELM control, as well. The nonlinear plasma
response has also been calculated using the initial value MHD codes NIMROD [31], M3D [32] and using the
MARS-F code [48, 52, 65, 66]. For resistive MHD models, sufficiently strong plasma rotation should reproduce
the ideal limit. However, as shown below, drift-MHD models are necessary to accurately describe the non-ideal
physics in the H-mode pedestal.
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12 I. Joseph: ELM control, transport, and magnetic perturbations

RFA represents a resonance between the applied field and the ideal MHD eigenmodesω = ωλ and should not
be confused by the “pitch”-resonance condition for reconnectionk‖ = 0. However, amplification of the internal
flux ψint relative to the applied fieldψvac also amplifies bothΨext andΨrec. Thus, a critical threshold to achieve
ELM control that depends on the size of the perturbation in the plasma, whether it beΨext, Ψint, orΨrec, also
implies that there must be a critical threshold in external amplificationText. A corollary implies that there is a
critical threshold in normalized pressure gradientα > αcontrol in order to achieve sufficient amplification for
ELM control. If α becomes too large (and the pedestal is not entirely in the second-stable region), then the
edge pressure will again violate the ELM stability criterion αELM . Thus, ELM control will typically only be
achievable within the windowαELM > α > αcontrol. Consideration of RFA is important for achievement of
ELM control and for the design of the perturbation spectrum because there is an upper limit on the perturbation
amplitude that can be applied due to constraints imposed both by engineering and plasma physics. Above a
critical perturbation strength, sufficient viscous damping will be generated to lock the plasma rotation to the
perturbation frequency [22] and can cause termination of the discharge. Recent experiments on MAST [48]
demonstrate that sculpting the ideal MHD response spectrumin order to produce a large amplification at the
plasma edge generates an internal field structure that affects the edge without locking core rotation. The opposite
condition, amplification near the more dangerous low-orderrational surfaces,oftencaused a back-transition to
L-mode [48, 52, 53]. Hence, altering the edgeq-profile and plasma shaping can strongly impact the amplification
for a given perturbation, and thus, impact the ability to achieve ELM control with a given perturbation spectrum.
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Fig. 4 The transmission factor for linear solutions to the drift-MHD equations, scaled byS1/3
H for m = 1. Drift frequencies

are assumed to be rather slowω∗iτrec = −ω∗eτrec = 1 to emphasize the resonances. (a) Amplitude and (b) imaginary part
for 2 fluid-MHD regimes: resistive-inertial (RI, solid blue), visco-inertial (VI, dashed red), and visco-resistive (VR, dotted
black) cases. (c) Amplitude and (d) imaginary part for FLR regimesρcs = 5ρrec: non-diffusive semi-colllisional regime (SC,
solid blue,PD = Pµ = 0); diffusive semi-collisional (SC-Diff, dashed red,PD = Pµ = 100), compared to visco-resistive
(VR, dotted black).

Copyright line will be provided by the publisher



cpp header will be provided by the publisher 13

4.3 Non-ideal plasma response

The non-ideal response of the plasma near the rational surface is determined by nonlinearity, dissipative processes
and finite Larmor radius (FLR) effects, and, in turn, determines the deviation of bothTint andTrec from the
linear ideal solution. Depending on the character of the dominant impedance mechanism, an island may or may
not be allowed to form.The theory and observation of magnetic islands was recentlyreviewed in [68]. The
asymptoticlinearanalysis was reviewed for single-fluid MHD in [22] and extended to isothermal two-fluid drift-
MHD in [69]. Ref. [70] extended the drift theory to include classical diffusion, and arbitrary particle diffusivity
is studied in [35]. The extension of the analysis to include neoclassical flow damping and the bootstrap current
was performed in [71, 72, 73].

If an island does form, the fast parallel transport tends to flatten the electron temperature gradient across the
island. Thus, isothermal models can be considered with somejustification. Many authors have studied the 4-field
reduced drift-MHD single-helicity model [67, 76] which determines the fieldsB = (Bzz+ z×∇ψ) andV =
Vzz+B×∇φ. Within the “flute-reduced” ordering, curvature changes occur at second orderδ(b ·∇b) ∼ O(δ2),
which implies thatδBz/B = −µ0δp/B

2 = −βδp/2p0 whereβ = 2µ0p/B
2
0 . To describe the model, introduce

dissipative terms: anomalous diffusivityD0, kinematic viscosityµ, and resistive diffusivityη‖/µ0 and define the

additional normalizations:̂T = T/eBr0VA0, p̂j ≡ n̂T̂j, V̂ = Vz/VA0, D̂ ≡ D0/VA0r0, µ̂ ≡ µ/VA0r0, and
η̂ = η‖/µ0VA0r0. After dropping the hats for ease of notation, the normalized equations become

∂tψ = −[φ− Te logn, ψ] + ηJ (25)

∂tU = −∇ · [φ+ Ti logn, V
−2

A ∇φ]− [ψ, J ] +∇ · µ∇(U +∇2Tin) (26)

∂tn = −[φ, n] + [ψ, nV + ρ2csJ ] +∇ ·D∇n (27)

∂tnV = −[φ, nV ] + [ψ, βn]. (28)

Here, the gyroviscous cancellation given by Ref. [67] results in the first (advective) term on the RHS of Eq. 26.
Matching to the ideal external solution asx → ∞ impliesψ → (A0 + A1ky|x|)eikyy, φ → ψωLs/ckyx and
n→ φω∗/ω, V → 0.

A comparison of the relevant time scales, shown in Fig. 2(a),is necessary to distinguish the importance of the
various terms in these equations. It is common to define the Lundquist # (or magnetic Reynolds #) as the ratio
between the Alfvén timeτA = qR/nVA0 and the resistive time,τR = r2sµ0/η‖ so thatSA = τR/τA. In fact, the
actual dimensionless parameter that appears in the theory is the hydrodynamic time associated with the magnetic
shearτH = Ls/nVA0. As can be seen in Fig. 2(b), the physically relevant definition of the Lundquist number
SH = τR/τH (solid black curve) is typically a bit larger thanSA (dashed black curve), becauseLs = qR/s is
typically smaller thanqR at the edge, where the shear is large. The “Prandtl #’s” are defined as the ratio between
the anomalous diffusivities and the resistive diffusivity: Pµ = µµ0/η‖ andPD = D0µ0/η‖. When the anomalous
viscosity is estimated from the energy confinement time, thePrandtl # is of order 10-100, implying that the effect
of anomalous diffusivity is relatively important. For example, Fig 2(a) and (b) compares the time scales and
Prandtl #’s estimated from theTi profile (solid blue line) to that defined using a constant value of 1m2/s (dashed

blue line). Finally, the ratio ofρcs to the visco-resistive layer widthρrec = S
−1/3
H rs describes the importance

of FLR terms. As can be seen in Fig. 2(b), FLR terms are significant becauseRH = ρcs/ρrec ∼ 5 − 10 (solid
red). This conclusion holds even if computed usingSA (dashed red) instead ofSH . Since bothP > 1 andR > 1
for this discharge, the so-called “semi-collisional” regimes are of greatest relevance (if anomalous transport is
included).

Analytic dispersion relations for the linear three field model obtained by neglecting the sound wave coupling
and settingV → 0 have been studied in [69, 70, 35]. Fig. 4(a) shows the relative internal (yellow) and recon-
nected (magenta) transmission factors, and the total reconnected transmission factor (blue) for the visco-inertial
regime. Fig. 4(b) shows the reconnected flux for the inviscid(D = µ = 0) regime (blue), for the visco-inertial
regime (magenta) and the visco-resistive regime (yellow).Figures 4(c) and (d) compare results for the semi-
collisional inviscid case (blue), the diffusive semi-collisional case (magenta) and the visco-resistive case (yellow)
assumingPD = Pµ = 100.

Dissipation generally smooths both the ion and gyro-centerresonance. However, the electron resonance is
robust to these effects precisely because this is the point where the electron impedance for driving parallel current
is minimized and nearly vanishes. In fact, 8 out of 10 regimes(all non-inertial regimes) identified in Ref. [70]
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have∆′s that depend more strongly onωe ≡ ω − ω∗e than onωi ≡ ω − ω∗i (see Table I of Ref. [70] but note
the different notation used there). The explanation is easiest to understand after transforming the parallel Ohm’s
law to Fourier space. The helical flux is determined via(ω − ω∗e + iηk2)ψk = ... which yields the largest
result when the perpendicular electron frequencyωe vanishes. In a low-collisionality plasma, the resistance (real
part) is much smaller than the reactance (imaginary part) unless|ωe| < ηk2. Both linear [30] and nonlinear
[34] simulations have confirmed the ability of islands to form near this location. Note, however, that Refs.
[30, 83] have determined a kinetic correction to the electron diamagnetic frequency that is proportional to the
electron temperature gradient. Fig. 4 clearly shows that the Lorentz force, proportional to the transmission factor
ImSint, changes sign whenω∗e < ω < ω∗i. The force always acts to brake electrons, but this will act to
increase ion rotation when electrons and ions rotate in opposite directions relative to the perturbation; i.e. when
ωeωi = (ω − ω∗e)(ω − ω∗i) < 0.

5 Steady-state transport mechanisms

The effect of small perturbations on transport can be estimated from the second-order nonlinear, i.e. quasilinear,
response. As shown in Sec. 5.1, the quasilinear convective transport due to magnetic perturbations, the so-
called “magnetic flutter flux” (Eqs. 31 and 32), is proportional to the quasilinear Lorentz force. Both the force
and the flux depend onText and can change direction because they are proportional toImSint. In the core,
where electrons and ions rotate in the same direction, the force acts to decelerate the flow and the flux acts to
increase particle confinement. In the pedestal, where electrons and ions rotate in the opposite direction, the force
acts to decelerate the electrons and accelerate the ions andthe flux acts decrease the particle confinement. The
predictions are qualitatively similar to observations in the case(ii) low-collisionality ELM suppression regime
discussed in Sec. 2. The effect generates a jump in the equilibrium density profile that becomes significant at a
threshold in field amplitude determined by the background diffusivity (Eq. 35). The quasilinear structure of the
layer is completed in Sec. 5.2 after consideration of ion viscous forces.

Transport mechanisms that incorporate physics beyond the drift-MHD model of Sec. 4 are considered next.
The ion viscous force, which plays a key role in particle transport, is typically dominated by neoclassical poloidal
flow damping. As shown in Sec. 5.2, this can potentially yieldparticle transport that is

√

mi/me times larger
than the axisymmetric case if there is a non-ambipolar electron transport mechanism that is simultaneously ac-
tive. A stochastic magnetic field, determined by the reconnected fluxTrec, naturally provides non-ambipolar
electron transport. While stochasticity typically enhances electron transport, thermal transport will not dominate
particle transport until a threshold in perturbation strength is exceeded (Eq. 50). Finally, results of calculations
of stochastic transport for low-collisionality ELM-suppression cases are discussed in detail.

5.1 Quasilinear transport

Transport along flux surfaces can flatten the gradients of temperature and density radially across an isolated
island. If the island widthw approaches the ion gyroradiusρci, the electrons will respond much more strongly
to the magnetic structure than the ions. As the island width is increased, the electron temperature will flatten
first, then the density and ion temperature gradients will follow. The critical width for each of these stages is
determined by the condition for in-surface transport to dominate perpendicular transport across surfaces [78, 79].
The parallel electron particle transport channel is often referred to as “magnetic flutter flux.”This flux was first
shown to be capable of inverting the density gradient acrossan island in the computations of Refs. [81, 82].
Since only electrons participate in the parallel current toO(me/mi), there is an equivalent ion flux due to drifts
generated by non-ambipolar forces such as inertia, viscosity, and ion-neutral collisions.As discussed in Sec. 3,
this component is equivalent toE ×B transport across flux surfaces.

The quasilinear flux can be derived in a manner that is similarto the derivation of the quasilinear Lorentz force
integrated over the layer. The Lorentz force is determined by the Maxwell stress tensorTEM = (BB−B2/2)/µ0

via ∇ · TEM = J × B. Just as the total Lorentz force can be expressed as
∫

J × Bd3x =
∮

TEM · d2a, the
flux-surface averaged torque density can be expressed as

〈fEM,θ〉 = 〈J×B · ∂θx〉 =
〈

∂rT
r
EM,θ −TEM : ∇∂θx

〉

. (29)
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Asymptotic matching to the ideal exterior region implies that the total current integrated across the layer must be
parallel to the equilibrium field. Thus, as derived in Sec. 3,both the jump in the tangential field[Bθ] = −q[Bζ]
and the force across the layerfEM,θ = −qfEM,ζ must be perpendicular to the equilibrium field. The result is

〈fEM,θ〉 = 〈∂r[BθB
r/µ0]〉 = δ(r − rs)ImSint |TextBvac|2 /µ0 (30)

whereB2
vac ≡ Br,vacB

r,vac. To derive this result, note that[BrBθ] = [Re (Br
intBθ,ext)] = Br

intBr,intImSint =
Br

vacBr,vac|Text|2ImSint. The second term on the RHS of Eq. 29 does not yield a contribution as singular as
the first.

The quasilinear particle flux can be evaluated in two different wayseΓr
ql =

〈

J‖b · ∇r
〉

= −〈J⊥ · ∇r〉. The
two forms are a consequence of quasineutrality, which implies that the electron and ion fluxes are equal and
opposite, as discussed in Sec. 3.3. The result is

〈

Γr
ql

〉

=

〈

(Bζ∂r[Bθ]−Bθ∂r[Bζ ])B
r

J eB2

〉

= ∂r

〈[

BθB
r

µ0eψ′
θ

]〉

= δ(r − rs)Dqlne (31)

Dql = ImSint |TextBvac|2 /µ0ene. (32)

Equation 31 demonstrates the equivalence of both a direct computation of the parallel current and of substitu-
tion of the poloidal Lorentz force into Eq. 9. The characteristic “diffusivity” can also be written asDql =
δB2ImSint/µ0ene = (2ρcsVs/β)× (δB/B)2ImSint whereβ = 2µ0p/B

2. Investigation of the layer solution
shows that the flow is actually convective with the characteristic radial flowVql = Dql/w, wherew is the width
of the current channel. The particle flux critically depends(in Eq. 32) on the imaginary part of the relative
transmission factorImSint. As discussed in Sec. 3.3, the ion flux that determinesSint is determined by viscous
and non-inertial forces. In the core, the MHD assumption that theE × B frequency is much larger than the
diamagnetic frequencies is valid. In this case, the force acts to decelerate both electrons and ions, and there is
an inward particle flux. However, in the pedestal, the ions and electrons rotate in opposite directions over the
entire red and green shaded region of Fig. 1(b). In this case,the force decelerates electrons, accelerates ions, and
generates an outward particle flux. These relations are summarized in Fig. 5.

Linear and nonlinear island theory produces a rich variety of regimes and a variety of calculations ofImSint ∝
Im∆′ have been performed in the literature, usually in the so-called “Rutherford” regime [69, 74, 75, 76, 77, 79,
80]. Since the torque is proportional toImSint ∝ Im∆′ this directly leads to predictions of the flux. For a
combination of neoclassical and anomalous viscous forces,the torque scales with various combinations of the
momentum damping rate [71, 72] and, hence, so does the flux. Note that theE × B flux across the unperturbed
flux surfaces must be determined by integration over the radial structure in the inner layer. It cannot be directly
evaluated by the asymptotic form of the solution because bothφ andne each have the asymptotic scaling∼ ψ/x.
This yields a large particle source in the inner layer and a vanishing flux∼ 1/x2 far from the layer. It has been
found to be small [35] unless the island size approaches the gyroradius in size, as discussed in Sec. 6.

In equilibrium, both the force and the flux must be balanced byother transport mechanisms. Total radial force
balance leads to

[

B2/2µ0 + p
]

= 0, so that there must also be a singular poloidal current

µ0Jy/B = ∂r[µ0p]/B
2 = δ(r − rs)β[ne]/ne. (33)

Particle continuity, Eq. 3, implies that if the magnetic flutter flux is balanced by an anomalous particle diffusion
V r = −D0n

′, then integrating across the layer leads to a jump in densityacross the layer:

[ne]/ne = Dql/D0. (34)

For a series of small jumps acrossN rational surfaces, the effect will become important onceNDql ∼ D0. This
yields a threshold

|Text|2(δBvac/B)2 > βD0/NρcsVs|ImSint|. (35)

Assumingβ ∼ 10−3, ρcsVs ∼ 103m2/s, and setting the transmission to order 1 would requireδB/B > 10−4

to exceed a background diffusivity of0.1 m2/s over 10 surfaces. However, given the expected scaling of the
transmission factor, the threshold would beS−1/2

int ∼ S
1/6
H ∼ 30 times larger,δBvac/B > 3× 10−3.
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xV[ ] < 0

ne[ ] [ ] > 0

xV[ ] > 0

x

fEM > 0fEM < 0

ne[ ] [ ] < 0

(a) (b)

Fig. 5 Jump conditions for the case of anomalous toroidal viscos-
ity. (a) In the core, where electrons and ions rotate in the same di-
rection (unshaded region of Fig. 1(b)), the force acts to brake both
species and generates an improvement in particle confinement. (b)
In the pedestal, where electrons and ions rotate in oppositedirec-
tions (shaded region of Fig. 1(b)), the force acts to brake electrons,
generating a decrease in particle confinement.

5.2 Neoclassical transport

Neoclassical viscous transport, which is driven by the variation of |B| within a flux surface, can compete with
the low level of anomalous viscous transport in the H-mode edge. This is especially true for the low collisionality
ELM suppression regime. Non-axisymmetric variations can directly drive transport through neoclassical toroidal
viscosity (NTV) [84]. Perhaps surprisingly, the axisymmetric neoclassical poloidal viscosity (NPV) can also
generate transport in reaction to the additional quasilinear forces and fluxes [36, 37]. Neoclassical theory predicts
that the flux surface averaged components of the viscous force can be expressed as a viscous drag against the
stationary field strength variations [84]

〈fπ,α〉 = −〈∂αx · ∇ · π〉 = −mnµnc

∑

k

kα (〈k ·V〉Ik[δB/B] + 〈k · 2Q/5p〉Lk[δB/B]) (36)

whereQ is the heat flux,µnc is the kinematic viscosity, and the wave-vectork = M∇θ − N∇ζ refers to the
Fourier harmonic ofδB‖. The form of the functionalsIk[δB/B] andLk[δB/B] depend on the collisionality
regime. For small perturbations, they scale as(δB‖/B)2 [84, 85], while for a sufficiently large island of width

w ∝
√

δB⊥/B they scale asδB‖/B [86, 87].
Axisymmetric poloidal variations of the magnetic field strength yield a neoclassical poloidal viscous force

(NPV). The usual analysis for a single ion species in large-aspect ratio geometry focuses on the parallel compo-
nent of this force because there are no other significant parallel forces: inertia can be neglected, the ion viscous
force is larger than the electron viscous force by

√

mi/me, and friction forces vanish when summed over species.
Thus, the parallel viscous ion stress must nearly vanish in order to satisfy parallel momentum balance and the neo-
classical poloidal flow is determined by the neoclassical poloidal heat fluxV θ

nc ≃ −2k′iQ
θ
nc/5pi = −kiT ′

i/Zieq.
In a large aspect-ratio tokamak,ki = 1.7 in the collisional regime, 0.5 in the plateau regime and -1.17 in the
banana regime. Using radial force balance, the poloidal flowdetermines the radial electric field in the frame of
reference that rotates with the plasma in the toroidal direction

Er ≡ −φ′ − V ζψ′
ζ = p′i/Zieni − qV θψ′

ζ . (37)

Neoclassical equilibrium is achieved rapidly and forcesEr to achieve the value

Enc,i = (p′i/ni + kiT
′
i + V ζψ′

ζ)/Zie. (38)

Due to axisymmetry, the toroidal flowV ζ is nearly conserved and, hence, bothV ζ andφ evolve on a much
slower timescale. Thus, the ion parallel viscous force and the ion particle fluxΓr

π,i are both suppressed by a

factor
√

me/mi, i.e. to the electron transport level [88, 89].
Additional forces due to inertia, anomalous viscosity, andion-neutral friction can significantly modify the

result of the usual neoclassical analysis. Parallel forcesmodify the equilibrium poloidal flow and nonambipo-
lar perpendicular forces modify the radial electric conductivity [90, 91]. If the additional forces are primarily
toroidal, then the net ion flux can potentially achieve the maximum valueΓr

π,i. However, the magnitude of the
ion flux, and therefore the net parallel force, is still constrained by ambipolarity, i.e. perpendicular force balance,
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and would be forced to vanish if there were no other nonambipolar transport mechanisms. The addition of a
nonambipolar electron transport mechanism can potentially enhance the neoclassical particle flux by a factor up
to
√

mi/me; i.e. to the ion transport level. Using Eqs. 9 and 36, the neoclassical radial fluxes are
〈

Γr
π,i

〉

= miniνnc,i(V
θ
nc − V θ)/Zieqψ

′
ζ = Dnc,iniZie (Er − Enc,i) /Ti (39)

〈

Qr
π,i

〉

=
〈

Γr
π,i

〉

Ti − χnc,iniT
′
i (40)

whereνnc,i ≃ µii/r
2
s is the poloidal flow damping rate,Dnc,i ≡ νnc,iρ

2
ci is the ion diffusivity, andχnc,i is the

thermal conductivity. In the Pfirsch-Schlüter regimeνnc,i ∼ q2νii, in the plateau regimeνnc,i ∼ qVTi/R, and in
the banana regimeνnc,i ∼ ǫ−3/2q2νii whereνii is the ion-ion collision frequency [88]. If thenormalizedforce
becomes as large asZie(Er − Enc,i)/Ti ∼ O(1/Ln), then the effective diffusivityDnc,i ∼ 0.05 − 0.5 m2/s is
large enough to play a significant role in transport.

For a simple non-axisymmetric case, consider the quasilinear transport generated by an isolated magnetic per-
turbation discussed in the previous section. A common assumption [73, 77] is that the Lorentz force is balanced
by neoclassical poloidal flow dampingfπ,y = −miniνnc,i(Vy−Vnc,y) and that parallel force balance is achieved
through anomalous toroidal viscosityfπ,z = miniµ∇2Vz . For the isothermal model,Vnc,y ∝ T ′

i = 0 and the
force within the layer generates a singular poloidal flow

Vy/VTi = fEM,y/miniνnc,iVTi = δ(r − rs)ρciDql/Dnc,i. (41)

Total parallel force balance implies that the parallel component of the sum of the viscous forces must vanish,
thereby generating a cusp in toroidal velocity

ρci,pol[∂rVtor]/VTi = Dql/µ. (42)

whereρci,pol = ρciBtor/Bpol. Radial ion force balance implies that

e(Er − Enc,i)/Ti = −δ(r − rs)Dql/Dnc,i. (43)

Thus, there must be a jump in the electric potential

e[φ]/Ti = Dql/Dnc,i −Dql/D0. (44)

This requires the sign of the jump in density and potential tobe proportional to the sign of the force in the layer,
as shown in Fig. 5. Assuming thatD0 > Dnc,i would yield the sign of the potential shown in the figure.

Non-axisymmetric variations in magnetic field strength directly generate a neoclassical toroidal viscous (NTV)
force. This force can be large enough to determine the equilibrium toroidal flow because the axisymmetric NTV
force is rather weakO(δ3) [92, 93]. The first analytic calculations of neoclassical transport induced by islands
and resonant harmonics that were specifically for tokamak geometry were performed in Ref. [86]. Calculations
of kinetic transport that include resonances between bounce and toroidal precessional motion and include the
ideal MHD response fields in realistic geometry have been performed using IPEC [85]. The analysis of the
low-collisionality regime showed that trapped particle resonances between the bounce frequency and toroidal
precession frequency can cause a factor of∼ 100 times faster momentum damping than that expected from
analytic estimates for the relevantν − √

ν low-collisionality regime. MARS-K [94] has evaluated the kinetic
effects on linear plasma response for RWM applications. If magnetic islands are negligible, the so-called “super-
banana” plateau regime has been used to estimate the upper limit on NTV [84, 95]. Although the maximum NTV
particle flux is relatively small, it can become large if magnetic islands open and become large enough to generate
an NTV force that scales asδB‖/B instead of(δB‖/B)2.

5.3 Stochastic transport

If the flux surface topology is altered by magnetic islands orstochastic regions, parallel transport along the
perturbed field lines will lead to a net radial flux with respect to the original flux surfaces [96, 23]. The quasilinear
radial flux can be expressed in the form [97]

〈Γr
e〉 = Dst,enee (Est.e − Er) /Te (45)

〈Qr
e〉 = 〈Γr

e〉Te − 2Dst,eT
′
e. (46)
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where

Est,e = −p′e/ne − keT
′
e. (47)

For weakly collisional regimes, the distribution functionremains close to a local Maxwellian and the cross-term
varies betweenke = 0.71 (collisional) andke = −0.5 (plateau). Quasilinear theory [96] predicts that the
diffusivity is limited to transport at the average thermal speedDst = D‖(δBrec/B)2 where the effective parallel

diffusivity isD‖ ≃
√

π/2VT qR. Rechester and Rosenbluth [23] predicted that in the collisional regime transport
occurs at the rateDst,RR = kRR

√

χ‖D‖(δBrec/B)2 wherekRR is a prefactor that depends logarithmically on
collisionality. Ref. [98] determines a variety of alternate prefactors that depend logarithmically on the dominant
dissipation mechanism. The ion diffusivity is much smallerthan the electron diffusivity sinceDst,i/Dst,e =

VTi/VTe ∼
√

me/mi. Hence, if parallel transport is dominant, the ambipolarity constraint will force the electric
field to reach the valueEst,e [97]. Because the heat flux satisfies Eq. 46, electron thermaltransport remains
√

mi/me ∼ 60 times larger than the particle flux even whenΓe = 0.
Quasilinear parallel transport scales asDst ∼ T 2

rec, which depends sensitively on the reconnected flux. At
1 keV, the effective parallel diffusivities areD‖,e ∼ 108 m2/s andD‖,i ∼ 106 m2/s for deuterium. For
δB/B ∼ 10−4−10−3, the quasilinear diffusivities are on the order of 1-100m2/s and 0.01-1m2/s, respectively.
Since H-mode transport coefficients are typically on the order of 0.1-0.5m2/s, the electron thermal diffusivity is
far too large to fit measured profiles, but the particle and ionthermal diffusivities are in the range to compete with
H-mode edge transport [27]. The first calculations of stochastic thermal transport in realistic divertor geometry
[26, 27] were carried out for the DIII-D ELM control experiments using the E3D fluid transport code [99]. The
magnetic field perturbations were taken to be equal to the vacuum field perturbations, and substantial thermal
transport was generated, in good agreement with theoretical estimates. While the initial H-mode equilibrium
state was in the collisionless regime, the final state had cooled sufficiently that it became collisional. Hence,
the fluid calculation would have been valida posteriori if the vacuum field assumption had been correct. The
E3D calculation also observed clear changes to the heat flux near the strike point. The mapping of the invariant
manifolds that intersect the X-point describe the envelopeof the heat flux profile to the target plate [43]. The
strike-point splitting is linear in the perturbation strength for small perturbations and can be described by Mel-
nikov theory for small perturbations [27]. The E3D calculation clearly showed this structure, in agreement with
the mapping. Subsequent studies using the EMC3-EIRENE fluidplasma/kinetic neutral transport code [28] also
accounted for parallel flowV‖ along stochastic field lines, but did not account for the electric field. While particle
transport was observed, the largest effect was in the reduction of the electron temperature. The implications of
these studies are sufficient to exclude standard models of stochastic “vacuum” field transport.

When neoclassical transport is included in the analysis, reduced 1D and 2D transport modeling of ELM control
discharges have shown that the deviation ofEr from the neoclassical value can produce enough particle transport
to describe experimental results [36, 37]. This requires the stochastic thermal transport to be suppressed by a
factor of 30 − 100 over the vacuum approximation, which can be achieved through modest screening of the
applied fields. For a combination of stochastic and neoclassical viscous transport, the ambipolar radial electric
field and fluxes are determined by the value

ENA = (σst,eEst,e + σnc,iEnc,i)/(σst,e + σnc,i) (48)

〈Γr
NA〉 = (Est,e − Enc,i)/(σ−1

st,e + σ−1

nc,i) (49)

whereσst,e = eDst,e/Te andσnc,i = ZieDnc,i/Ti. Stochastic transport will dominate onceσst,e ≫ σnc,i.
Thus, achieving large thermal transport would require a threshold in perturbation strength

(

δBrec

B

)2

>
ZjTe
Ti

Dnc,i

D‖,e
≃ Te
Ti

ρci
qR

νnc
ωci

√

2me

πmi
. (50)

If ν∗i ∼ 1 andTe ∼ Ti at the separatrix, then the condition for thermal transportto exceed particle transport
requiresδBrec/B > (ρci/qR)(2me/πmi)

1/4 > 10−5 for a deuterium plasma, assuming thatρci/qR ∼ 10−4.
Thus, the experimentally relevant applied fields would be inthe correct range for enhanced particle transport
rather than thermal transport if there is a modest screeningof the vacuum fields,Trec < 0.1. However, the
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experimental vacuum fields often generate weak stochasticity if there is no screening, and even a modest screening
could eliminate island overlap.

Gyrokinetic simulations [29]of DIII-D discharge 126006that used the vacuum field perturbation fields and
allowed an ambipolar electrostatic potentialφ0(r), constrained to be a function of unperturbed flux surfaces,
showed that the combined effects of particle trapping and heat flux limits reduced the magnitude of the stochastic
heat flux by a factor of 8. The enhanced transport was still sufficient to destroy the pedestal profiles for temper-
ature, density and the radial electric field. As predicted in[97], a large positive radial electric field developed in
order to maintain ambipolarity, destroying theEr well. Particle transport was roughy∼ 100 times larger than
the unperturbed axisymmetric case due to parallel transport, non-axisymmetric parallel pressure variations, and
NPV. Inside the pedestal the contributions from each channel were roughly equivalent, but the parallel pressure
variation dominated at the separatrix. The simulations demonstrated that NPV transportΓπ,i in a stochastic field
contributes a sizable fraction of particle transport, as large as parallel outflowΓV (as large as 1/3 of the total in
Fig. 2(f) of [29]), and∼ 30 times larger than the axisymmetric case. The simulation [29] matches the analytic
result well, but demonstrates that there are other significant components to the flux due to parallel outflowΓV

and the non-axisymmetric pressure gradientΓp. Ref. [29] also explored an ad-hoc model for screening of the
perturbation fields that produced results that were much more consistent with experimental data. If the magnetic
perturbations are reduced in amplitude by a factor of 10 nearthe separatrix, so that the separatrix flux surfaces are
retained, the electrons remain well confined by the flux-surfaces. In this case, large transport develops at the top
of the pedestal, but not in the steep gradient region, and theprofiles are in qualitative agreement with experiment.
This indicates that screening of the perturbations in the steep gradient region is likely to be a good assumption.
However, Sec. 4 demonstrated that screening is likely to be equally important across the entire pedestal. Thus, the
underlying transport mechanism at the top of the pedestal isnot necessarily due to a stochastic field, but perhaps
due to a single island or a series of islands constrained to a small size by plasma response.

6 Interaction with turbulence

Experimental evidence suggests that there is a prompt impact on turbulent fluctuations during the application of
the magnetic perturbations [39, 45]. The direct effect of the magnetic perturbation on the magnetic curvature
drive is predicted to be small due to the tendency to develop field-aligned mode structure; i.e. within the flute-
reduced orderingδ(b · ∇b) ∼ O(δ2) [67]. In fact, Ref. [100] actually found a reduction in the linear growth
rate of drift waves due to the reduction in the density and temperature gradients across a sufficiently large island.
However, Alfvén waves that develop a structure on the orderof the ion gyro-radius can directly mode-couple
to drift waves and can drive turbulent transport. Refs. [101, 102, 103] found that small-scale magnetic islands,
with a width on the order of the ion gyroradius, actually radiate electron drift waves. This mechanism causes
transport by drift waves that are not linearly unstable, butare driven by the island structure that develops. In
the kinetic theory [101], radiation can propagate when the rotation lies in the electron drift band of frequencies
ωe∗ < ω < 0; i.e. as long asωωe < 0. This region of the pedestal is shown as the green shaded region of Fig.
1(b). One failing of the drift-MHD model is that it allows drift wave propagation and radiation [102, 103] for
0 < ω < ω∗i as well, i.e. over the entire rangeωeωi < 0, the entire green and red shaded region in Fig. 1(b).
Turbulent transport simulations including magnetic islands using the drift model have been explored numerically
by [104, 105, 106].

In the steep gradient region of an H-mode pedestal, the flows are sheared strongly enough that they are believed
to suppress turbulence. Sheared flows break apart smaller eddies by stretching the structure so finely that it
eventually reaches length scales where dissipation provides strong damping. As described in Ref. [107] and
references therein, many models of the impact of shearing predict that a sheared flow will reduce the anomalous
diffusivity (proportional to turbulence amplitude) viaDturb = D0/

(

1 + c|ωs/γ|h
)

whereωs = −φ′′0/B is the
flow shear frequency,γ is the decorrelation rate of the mode andc is a dimensionless parameter. The exponent
h = 2/3 if the flow is laminar (linear shearing rate) andh = 2 if the flow has an X-point or is chaotic (exponential
shearing rate). Ref. [108] derived a general non-Markovianmodel withh = 2, and a number of authors have
found this scaling for particular models of turbulence. Thus, a reduction in equilibrium flow shear could lead
to an increase in turbulent transport that would be of the correct order of magnitude to explain the experimental
results.
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Increased damping of zonal flow fluctuations would lead to a similar increase in turbulent transport [107].
Zonal flows suffer little collisionless damping because they vary radially, but have no toroidal or poloidal depen-
dence to leading order. In simulation, these secondary instabilities are observed to be pumped to large amplitudes
by the modulational instability where they then regulate the turbulent amplitude by shearing. A simple predator-
prey model in which the turbulent amplitudeφ drives a secondary instabilityV that is capable of turning off the
transport was introduced in [107] (using slightly-different notation):

d
〈

φ2
〉

/dt = γ
〈

φ2
〉

− α
〈

φ2
〉〈

V 2
〉

− ν′
〈

φ2
〉2

d
〈

V 2
〉

/dt = α
〈

φ2
〉〈

V 2
〉

− ν
〈

V 2
〉

(51)

where〈X〉 is the ensemble average ofX . Here,γ is the growth rate andν′ is the nonlinear damping rate of the
drift-waveφ, andν is the linear damping rate of the zonal flowV . This model conserves the energy between the
shearing apart of drift waves and the pumping of the zonal flows, exchanged at rateα. The model clearly has a
stationary state at the point where there is no flow

〈

V 2
〉

= 0 and the turbulence amplitude is set by nonlinear
damping:

〈

φ2
〉

= γ/ν′. There is also an equilibrium with both flow and turbulence. For relatively weak nonlinear
dampingνν′ < α2, the dynamic equilibrium is

〈

φ2
〉

≃ ν/α and
〈

V 2
〉

≃ γ/α. This simple model yields the
important conclusion that the turbulent flux increases strongly with the zonal flow damping rate; ifargne/φ = δ

thenDturb ∝ 〈φ〉2 sin δ = (ν/α) sin δ. Thus, an increase in the damping of zonal flows could cause anincrease
in anomalous diffusivity. An order unity increase in damping would be of the correct order of magnitude to
explain the observations.

7 Conclusion

In conclusion, the physics of ELM control using magnetic perturbations involves a rich interplay of various
physical processes that possess nontrivial variation withplasma parameters. Two important physics issues appear
to be resolved: (i) The dependence onβ, shaping, and other aspects of the perturbation spectrum islikely to be
due to resonant field amplification of the applied perturbations. (ii) A stochastic layer is not likely to form within
the steep gradient region of the pedestal. The appearance ofstriated strike point patterns is not inconsistent with
a perturbed layer outside of the steep-gradient region of the pedestal, but essentially no stochasticity inside of
the steep-gradient region. However, a single island may form near the region whereωe = ω − ω∗e ∼ 0, which
typically occurs at the top of the pedestal, due to the steep gradient in electron temperature. The implications
of this possibility are still under investigation because theoretical models that incorporate finite Larmor radius
effects are required when the perturbation frequency is on the order of the drift frequency and/or when the size
of the non-ideal region approaches the ion gyroradius. The dependence on collisionality is likely to be due to the
mechanism for enhanced transport.

This article assessed three broad hypotheses for enhancingtransport with non-axisymmetric magnetic fields:
(i) enhanced transport due to an island or stochastic layer,(ii) enhanced axisymmetric neoclassical transport
due to the change in ambipolar electric field, and (iii) interactions with turbulence. For small islands, outward
transport due to either magnetic flutter fluxes or radiation of drift waves requires a zone of rotation where ions
and electrons rotate in opposite directions relative to theperturbationωeωi = (ω − ω∗e)(ω − ω∗i) < 0. The
opposite condition yields enhanced confinement and differences in the pedestal rotation profile may explain the
difference between high and low-collisonality ELM suppression results. All of the proposed mechanisms may
be active simultaneously or yet another process may be responsible. The identification and determination of the
process that dominates over a given span of collisionality is necessary for extrapolation to future devices.
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[92] L.Ṁ. Kovrizhnikh, Sov. Phys. JETP29, 475 (1969).
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